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Helical vortices in swirl flow
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Helical vortices in swirl flow are studied theoretically and experimentally.
A theory of helical vortices has been developed. It includes the following results:

an analytical solution describing an elementary helical vortex structure – an infinitely
thin filament; a solution for axisymmetrical vortices accounting for the helical shape
of vortex lines and different laws of vorticity distribution; a formula for calculation
of the self-induced velocity of helical vortex rotation (precession) in a cylindrical
tube; an explanation of the zone with reverse flow (recirculation zone) arising in swirl
flows; and the classification of vortex structures.

The experimental study of helical vortices was carried out in a vertical hydro-
dynamical vortex chamber with a tangential supply of liquid through turning nozzles.
Various vortex structures were formed owing to changing boundary conditions on the
bottom and at the exit section of the chamber. The hypothesis of helical symmetry
is confirmed for various types of swirl flow. The stationary helical vortex structures
are described (most of them for the first time) the features of which agree with the
results and predictions of the theoretical model developed. They are the following:
a rectilinear vortex; a composite columnar vortex; helical vortices screwed on the
right or on the left; a vortex with changing helical symmetry; a double helix – two
entangled vortex filaments of the same sign.

1. Introduction
Numerous facts confirm that concentrated vortices of helical shape are widespread

in swirl flows (see, for example Saffman 1992). The efficiency of many techno-
logical devices with swirl flow depends on the generation of helical vortices aris-
ing downstream of the point of columnar vortex breakdown (Gupta, Lilley &
Syred 1984). However, most researchers ignore the complex structure of swirl flow
in vortex apparatuses. According to the review by Alekseenko & Okulov (1996)
only some authors (see Guarga et al. 1985; Ishizuka 1989; Kumar & Conover
1993; Yazdabadi, Griffiths & Syred 1994; Bandyopadhyay & Gad-el-Hak 1996)
point to the helical structure of the vortex in technological devices with intensive
swirling. The helical vortex structures are often mentioned when the phenomenon
of vortex breakdown is studied (Chanaud 1965; Sarpkaya 1971; Faler & Leibovich
1977; Escudier 1988; Brücker & Althaus 1992, etc.) However, they were not the
main subject of research in those works but only mentioned as being a result
of the vortex breakdown. A special experimental study of various large-scale he-
lical vortex structures in a vortex chamber was started in Alekseenko & Shtork
(1992).

The main goal of this work is the theoretical and experimental investigation of
steady (immobile or rotating with a constant angular velocity) helical vortex structures
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in a swirl flow. Simple theoretical models of flow are put forward based on a hypothesis
about the helical symmetry of the vorticity field and taking into account the presence
of a solid wall (bounded swirl flows). Note that just bounded flows are the subject of
study, as it is only on account of the wall’s influence that we are able to explain a
number of phenomena arising in vortex chambers. As a result of the investigation a
classification is made of helical vortex structures generated in swirl flows.

In the next section the experimental set-up and methods of studying swirl flow are
described. Similarly to the case of a vortex breakdown (Faler & Leibovich 1977) it
has been established that the commonly used parameters of swirl flow (Reynolds and
swirl numbers) do not uniquely characterize the flow structure.

The third section is devoted to the theoretical description of flows with helical sym-
metry. The assumption about helical symmetry results in an important simplification
of the mathematical problem. Earlier attempts were undertaken to construct simple
models for a flow with helical symmetry (see, for example, Dritschel 1991 and
references therein). However, as a rule the Beltrami condition was used for additional
simplification, which assumes identical fields of velocity and vorticity within a constant
factor in the whole area of flow. The concentrated vortices do not belong to this class.
In our work another class of flows covering the concentrated helical vortices is
investigated. A simplifying condition for such flows has been formulated for the
velocity components and is valid in the whole area of the flow, unlike the preceding
works (Hardin 1982; Okulov 1993, 1995), where the condition of helical symmetry
was applied to a vortex filament. The advantage is that the velocity components can
be easily checked in an experiment. Hardin (1982) obtained an analytical solution in
the form of infinite series of modified cylindrical functions and their derivatives for
a helical filament in an unbounded space. A similar representation of the solution
was obtained by Okulov (1993, 1995) with a helical filament in a bounded space
(cylindrical tube); then it was used for the description of combustion (Borissov,
Kuibin & Okulov 1993) and energy separation (Borissov, Kuibin & Okulov 1994) in
swirl flow. Both solutions have a fairly complex form, which is unsuitable for flow
analysis. Besides, the series involved in these solutions diverge at the points of the
vortex filament. For correct computation of the velocity field and the stream function
it is appropriate to separate the singularities from the solution in explicit form. Such
a procedure for both the stream function and the velocity is carried out here. As a
result, flows induced by both the left-handed and right-handed helical filaments with
different parameters are analysed. The difference between the left- and right-handed
geometry of a vortex was revealed by Fukumoto & Miyazaki (1991) for the stability
characteristics in a second-order cut-off model. A new fact established in the present
work is that the origin of reverse flow in a central zone of swirl flow is possible only
for left-handed vortices.

We cannot describe all the properties of swirl flows with the help of an elementary
vortex structure – an infinitely thin helical filament – as real vortices have a finite
core size. In § 4 we start to consider this class of helical vortices with the simplest
particular case of axisymmetrical or columnar vortices. Elementary models of such
vortices have long been in existence: Rankine, Lamb, Burgers etc. (Hopfinger & van
Heijst 1993). However, the above models yield only the radial distribution of the
tangential component of a velocity vector. The axial component does not depend on
the radius, which is inconsistent with the numerous experimental data. We propose a
model of an axisymmetrical vortex as a superposition of the helical vortex filaments
with a profile of the axial velocity that matches the experimental data well. In the
experiment we also obtained a more complex axisymmetrical vortex structure with an
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inner core consisting of left-handed helical filaments encircled by an annular vortex
consisting of right-handed ones.

The motion of a helical vortex is of great interest. It is known that a helical vortex
filament is a representative of a class of filaments which move without changing
form, with constant velocities of rotational and translational motions (Kida 1981).
Many works are devoted to determining the velocity of the self-induced motion of
helical vortex filaments in an unbounded space (Joukowski 1912; Crow 1970; Widnall
1972; Widnall & Bliss 1971, etc.). An important result found by Kelvin (1880) was
the determination of the rotational velocity of a weakly curved columnar vortex.
Moore & Saffman (1972) derived a generalized formula which accounted for details
of the vorticity distribution inside the vortex core. Later their result was confirmed
in experiments by Maxworthy, Hopfinger & Redekopp (1985). A vortex with a small
helical pitch was considered by Levy & Forsdyke (1928). A full comparison of these
investigations was performed by Ricca (1994). In § 5 the influence of a solid wall on
the rotation of the helical vortex filament is estimated. Hashimoto (1971) tried to
determine the wall effect, neglecting the self-induced velocity related to the curvature
and torsion of a filament. But his result is devalued by errors, even for the velocity
induced by the wall. Kuibin & Okulov (1994) obtained a formula for the rotation
frequency in a cylindrical tube. However, they used a fairly rough approach for the
estimation of the self-induced velocity. Using Ricca’s (1994) prescription of Kelvin’s
(1880) formula we succeeded in making quite a precise evaluation of the contribution
of different effects to vortex motion in a tube.

As a result, the existence of immobile helical vortex structures in bounded space has
been predicted. The velocity of their self-induced motion is compensated by the wall’s
effect and translational flow along an axis. The last section is devoted to the description
of the experimental investigation of such vortex structures. We detected the following
immobile structures: a right-handed vortex, a left-handed vortex, a vortex with a
change of helical symmetry; and a double helix – two intertwisted vortex filaments of
the same sign.

2. Experimental methods
2.1. Experimental equipment

It is most convenient to study helical vortices in vortex chambers with controlled geo-
metric and regime parameters. Our experimental investigations of concentrated vor-
tices were performed in the tangential chamber shown in figure 1. The test section,
made of Plexiglas, was a vertical chamber of a square cross-section with dimensions
of 188 × 188 × 600 mm. Straight-flow rectangular nozzles with an outlet section of
23× 14 mm (the former is the vertical size) were mounted at three levels and aggre-
gated in corner units, 15 mm from the chamber corner. The turning angle of each
nozzle may be changed in the range of γ = 0–40◦.

The swirling flow was generated by directing the nozzle at a tangent to a certain
circumference of diameter d with its centre on the channel axis. It is known (Escudier,
Bornstein & Zehnder 1980; Gupta et al. 1984) that the conditions at the outlet and
closed endwall of a chamber have the most significant influence on the flow structure
in cyclone-vortex chambers. In particular, a concentrated vortex like a vortex filament
is observed in a chamber with a diaphragmed outlet. The geometric conditions in the
tangential chamber were varied by changing the nozzle direction and bottom shape,
diaphragming the outlet, and displacing the outlet orifice.
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Figure 1. Schematic diagram of the vortex chamber with a tangential supply of liquid. The chamber
has 12 rectangular nozzles with variable turning angle γ. d is the diameter of the conventional
circumference.

The vortex chamber used in the experiment is not canonical due to the square form
of its cross-section. Nonetheless, it was the most suitable for studying a variety of
vortex structures. Moreover it was shown with the help of cylindrical inserts that, for
regimes with concentrated vortices, the flow patterns in near-axis areas of cylindrical
and rectangular channels practically do not differ from each other. This fact may be
explained by the existence of corner vortices that induce an imaginary near-cylindrical
surface inside which a flow induced by the main vortex develops.

Water was used as the working liquid. The flow visualization was made possible
with tiny air bubbles. In the experiments, the distributions of velocity and static
pressure were measured. To measure the wall pressure, holes with a diameter of 0.4
mm were used. Static pressure in the flow was determined by a Pitot-static tube with
a diameter of 1.4 mm. The pressure value was measured with a resistance strain
transducer.

The profiles of tangential and axial components of velocity were measured using
three methods: standard drop tubes with a diameter of 1.4 mm (far from the vortex
axis), stroboscopic particle visualization (Shtork 1994) and the electrodiffusion method
(Alekseenko & Shtork 1992).

2.2. Parameters of swirl flow

As for any viscous flow, the basic regime parameter of flow in a vortex chamber
is the Reynolds number Re = Q/(mν), where Q is the flow rate, m is the chamber
width, and ν is the kinematic viscosity. To characterize the degree of flow swirling in
a vortex chamber, a swirl number S is introduced. Various ways of determining this
parameter exist. The simplest expressions represent the ratios of maximum tangential
velocity to a maximum axial one, or the averaged tangential velocity to an averaged
axial one. The most widespread definition is (Gupta et al. 1984)

S = Fmm/FmLS . (2.1)
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Here Fmm =
∫
Σ
ρwϕwzr dΣ is the axial component of the angular momentum flux,

Fm =
∫
Σ
(p + ρw2

z )dΣ, is the axial component of the momentum flux, wz and wϕ are
the axial and tangential velocity components, r is the radial coordinate, ρ is the fluid
density, LS is the characteristic size (radius in the case of a cylindrical chamber), p
is the superatmospheric pressure, Σ is the cross-section area. The turbulent fluctua-
tions are generally neglected, therefore the pressure and velocities are considered to
be time-averaged.

An exact calculation of the swirl number by formula (2.1) is practically impossible
since the velocity and pressure fields are usually unknown. However, one can evaluate
a swirl number through the geometric parameters of a chamber. Let us estimate the
swirl number for the tangential chamber shown in figure 1.

The axial component of the angular momentum flux (for the same nozzle velocities
and diameter d) may be approximately written as

Fmm =

n∑
i=1

(G′V ′d/2)i = GV ′d/2 = G2d/2ρΣ ′.

Here i is the nozzle number, n is the number of nozzles, G is the total mass flow rate,
G′ is the mass flow rate through the nozzle, V ′ is the mean velocity at the nozzle exit
section weighted by the momentum, Σ ′ is the cross-section area of all the nozzles.

The momentum flux is, correspondingly, expressed by the formula Fm = GV =
G2/ρΣ, where V is the velocity in the chamber cross-section area weighted by the
momentum. It follows from (2.1) that S = Σ d/(2Σ ′LS ). Assuming that Σ = m2,
LS = m/2, Σ ′ = nσ, where σ is the cross-section area of one nozzle, the swirl number
can be finally estimated as

S = md/(nσ). (2.2)

As is seen, parameter S depends only on the geometrical characteristics of the device,
therefore it is called the design swirl number. In Feikema, Chen & Driscoll (1990) a
direct comparison of the geometrical swirl parameter with its precise value obtained
by (2.1) was performed for a channel with axial symmetry. Despite the quantitative
differences a good correlation was observed between these definitions.

However, further numerous experimental investigations of swirl flows (Alekseenko
& Shtork 1992; Alekseenko et al. 1994) showed that the Reynolds number and swirl
number did not uniquely characterize the flow regime. In particular, the conditions
at the exit and the bottom of a chamber play an essential role. Quite different
flow structures, which will be described in §§ 4 and 6, were observed in the vortex
chamber at approximately the same values of flow rate Q and swirl number S but
for different conditions at the chamber endwalls: a rectilinear vortex (flat bottom
and a diaphragmed outlet with a central orifice); a precessing vortex (flat bottom
and open outlet in the chamber); a left-handed helical vortex (flat bottom and a
displaced outlet orifice); a double helix – two entangled vortices (two flat slopes on
the bottom and a central outlet orifice). In all cases the direction of the flow swirl
was the same.

Two important points follow from the observations: (i) Re and swirl number S do
not uniquely characterize the flow structure; (ii) the observed vortex structures have
helical symmetry which means the existence of a spatial period along the z-axis. The
former point is accepted as the main assumption in the theoretical model of helical
vortices.
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3. Two-dimensional flow with helical symmetry
3.1. Governing equations

Let us consider the swirl flow of an inviscid incompressible fluid in a cylindrical
channel of radius R. The right-handed system of cylindrical coordinates is used with
radius-vector r = (r, ϕ, z) and axis z coinciding with the tube axis. The coordinate
system is chosen so that the direction of flow swirl agrees with the positive direction of
angle ϕ. The directions of the stream and axis z may not coincide. It is assumed that
the swirl flow has helical symmetry (see Landman 1990; Dritschel 1991). This means
that the flow characteristics conserve their values along the helical lines given by the
equations: r = const and ϕ−z/l = const with the tangent vector B = B2[ez+(r/l) eϕ].
B is referred to as the ‘Beltrami vector’. Here B2 = (1 + r2/l2)−1, h = 2πl is the pitch
of the helical symmetry, ez and eϕ are the axial and circumferential unit vectors
respectively. The quantity l has a positive value for right-hand helical symmetry and
a negative value for the left-hand one. B is orthogonal to the radial unit vector er .
The cross-product of B with er defines a third orthogonal vector in the direction
ϕ − z/l: χ = B × er = B2[eϕ − (r/l) ez]. Now, let us introduce quantities associated
with projections of the velocity vector w = (wr, wϕ, wz) on B and χ :

wB =
B · w
B2

= wz +
r

l
wϕ , wχ =

χ · w
B2

= wϕ − r

l
wz, (3.1)

and write the continuity and Euler equations with the use of (3.1):

∂(rwr)

∂r
+
∂wχ

∂χ
= 0, (3.2)

∂wr

∂t
+ wr

∂wr

∂r
+ wχ

∂wr

r∂χ
− B4

r

(
wχ +

r

l
wB

)2

= −1

ρ

∂p

∂r
, (3.3)

∂wχ

∂t
+ wr

∂wχ

∂r
+ wχ

∂wr

r∂χ
− B2wr

(
2
r

l
wB + (2− B−2)wχ

)
= −B

−2

ρ

∂p

r∂χ
, (3.4)

∂wB

∂t
+ wr

∂wB

∂r
+ wχ

∂wB

r∂χ
= 0. (3.5)

The continuity equation in helical variables (3.2) permits the following decomposi-
tion of the velocity field (Landman 1990):

w = wBB + ∇Ψ × B. (3.6)

The same form of decomposition is valid for the vorticity field also:

ω = ζ B + ∇v × B. (3.7)

The four scalar functions on the right-hand side of (3.6) and (3.7) are functions of
(r, χ, t). The kinematic condition ω = ∇× w implies that

v = wB , ∆∗Ψ = 2B4wB/l − B2ζ, (3.8)

where

∆∗ ≡ 1

r

∂

∂ r

(
rB2 ∂

∂ r

)
+

1

r2

∂2

∂ χ2

is the helical Laplacian operator.
Further, we shall restrict our consideration to a class of flows in which the equation

(3.5) is satisfied identically. The simplest solution of this equation is wB = const. In
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this case the flow is two-dimensional. The constant corresponds to the value of the
axial velocity w0 at r = 0 determining a uniform flow imposed on a basic one, i.e.

wz = w0 − r

l
wϕ or

wz − w0

wϕ
= −r

l
. (3.9)

On the other hand this condition together with (3.8) and (3.7) means both that a
vorticity vector is directed along the helical line:

ω = ζ B =
(
0, B2ζ r/l, B2ζ

)
, (3.10)

and that velocity and vorticity fields are orthogonal in a frame of reference moving
with velocity w0 along axis z, unlike the helical Beltrami flows, where they are parallel
to each other (Dritschel 1991). As the velocity field is now presented by the single
function

w =

(
1

r

∂Ψ

∂χ
, B2

(
w0

r

l
− ∂Ψ

∂r

)
, B2

(
w0 +

r

l

∂Ψ

∂r

))
, (3.11)

Ψ may be called a stream function.
To close the problem we have to derive an equation for function ζ (or ωz). The

Helmholtz equation for the axial component of vorticity in the helical variables reads

∂ωz

∂t
+ wr

∂ωz

∂r
+ wχ

∂ωz

r∂χ
= ωr

∂wz

∂r
+
(
ωϕ − r

l
ωz

) ∂wz
r∂χ

. (3.12)

In view of (3.10) the right-hand side of (3.12) equals zero. This means that ωz does
not vary along the trajectory of a liquid particle, and in the stationary case ωz is an
arbitrary function of stream function Ψ .

Further, it is assumed that the distribution of vorticity ω is a known vector-function
of coordinates satisfying relations (3.10), (3.12) and the problem is reduced to the
solution of a linear differential equation for the stream function Ψ :

∆∗Ψ = 2B4w0/l − ωz (3.13)

with the boundary condition at the wall

wr|r=R = r−1 ∂Ψ/∂χ|r=R = 0. (3.14)

Helix pitch l and velocity w0 at the flow axis are the parameters of the problem.
The problem of reconstructing a velocity field using the given vorticity distribution

in the case of an unbounded space is usually solved on the basis of an integral repre-
sentation of the solution in the form of the Biot-Savart law. In practical applications,
however, the case of bounded flows is more important. With a solid boundary, the
Biot-Savart law is of little use since the vorticity distribution at the wall is unknown.
In this connection the solving of the linear problem (3.13)–(3.14) looks to be a more
promising way.

3.2. Novel local integral characteristics; testing helical symmetry

As is shown in § 2.2, the swirl number S and flow rate Q (or Re in the case of
viscous fluid) do not unequivocally determine the structure of the swirl flow in a
vortex chamber. An alternative approach for flows with helical symmetry is related
to introducing two novel parameters. They follow from the above theoretical analysis
and are the helix pitch, 2πl, and the velocity of uniform flow, w0. These parameters
are involved in (3.9) connecting the axial and tangential components of velocity in a
two-dimensional helical flow.
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In the particular case of zero axial velocity, helix pitch l is uniquely determined
through the integral swirl parameter S . Actually, one can obtain l from (3.9) by
multiplying it by wz , integrating over the cross-section of the flow at w0 = 0, and
allowing for (2.1):

l = −Fmm/Fm = −LSS .
Here the pressure contribution is excluded from the definition of the momentum flux
Fm = ρ

∫
w2
z r dr dϕ in accordance with a definition by Feikema et al. (1990).

If the axial velocity at the symmetry axis of the flow is not equal to zero, which
most often occurs in experiments, then we have from (3.9):

l = −Fmm/(Fm − w0 G) = −LSS/(1− w0 G/Fm), (3.15)

where G is the mass flow rate. Thus, in arbitrary swirling flow with helical symmetry,
the helix pitch depends not only on the swirl number S but also on the value of the
velocity at the axis w0 determining uniform flow.

It should be noted, however, that in actual flow, as a rule, the condition of helical
symmetry is not satisfied along the entire length of the experimental set-up. The
flow undergoes several transformations with distance from the swirling arrangement
– from vortex breakdown to complete decay of the swirl. The assumption of helical
symmetry in the proposed model means an identical flow structure with the period of
2πl along the z-axis for an infinitely long interval. It is clear that such an assumption
is not suited to the whole flow region. Nonetheless many authors (Leibovich 1984;
Escudier 1988 etc.) show that fairly long regions exist in a swirl flow where the velocity
profiles vary only moderately. It would be reasonable to apply a hypothesis of helical
symmetry to these regions in a local sense. To do this we should test condition (3.9)
for real swirl flow. If such an approach is valid then parameters l and w0 may be
accepted as the new swirl flow characteristics.

To verify the hypothesis of helical symmetry we shall compare the measured
values of axial velocity with the values calculated by formula (3.9) through measured
values of tangential velocity at the same points. Initially it is necessary to determine
parameters l and w0. If the local flow characteristic w0 is measured directly in a given
cross-section the value of l may be computed immediately from (3.15). However,
it is not always possible to do this with sufficient accuracy since detailed data on
velocity fields are usually unknown. The problem of determining l may be simplified
significantly if the linear relation between the velocity components in (3.9) is taken
into account. After averaging (3.9) the simple formula

l = 〈rwϕ〉/(w0 − 〈wz〉) (3.16)

follows where angle brackets mean averaging. The averaging in (3.16) may be done
over either whole cross-sections of the tube or some parts where helical symmetry
exists. In particular, the vicinity of the tube wall, where viscous effects occur, was
excluded during the processing of experimental data. The comparison of results of
averaging with different weight functions shows that in the case of a small number
of measurement points on the radial coordinate averaging over the cross-section with
weight function 1/r is the best.

Generally, the value of the velocity at the flow axis is unknown or is determined
with large error. Then parameters l and w0 are found by minimizing the mean-square
deviation from zero of the functional〈(

lwz − lw0 + rwϕ
)2
〉
.
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Figure 2. Testing of the local helical symmetry in swirl flows with different types of tangential
swirl generators. (a) Slit swirler (Escudier 1988, class A, cross-section iii, V is the velocity in the
inlet slit); (b) rotating tank with a central suction tube (Maxworthy, Hopfinger & Redekopp 1985,
Ω = 1.51 s−1, Q = 180 l h−1); nozzle swirler (Shtork 1994), (c) diaphragmed exit orifice, de = 70
mm, ze = 430 mm, Re = 2.8 × 104, S = 3, z = 323 mm, (d ) chamber without a diaphragm,
Re = 3.2 × 104, S = 1, z = 385 mm; (e) vane swirler (Garg & Leibovich 1979, Re = 11480, swirl
parameter, Ω = 0.79, z = 19.3 cm, R is the chamber radius). (a–c) Stationary swirl flow, (d,e) swirl
flows with a precessing vortex core. •, Measured values of the axial velocity wz; ◦, axial velocity
calculated according to (3.9); l and w0 are the values of the helix pitch and axial velocity at the
axis, r is the radial coordinate.

Substituting the expression for w0 from (3.16) into this functional we have

l =
(〈rwϕ〉〈wz〉 − 〈rwϕwz〉)/(〈w2

z 〉 − 〈wz〉2
)
. (3.17)

After computing l by (3.17) we find w0 = 〈wz〉 − 〈rwϕ〉/l.
The testing for local helical symmetry in swirl flows was carried out using various

types of swirlers, flow regimes and methods of flow diagnostics described previously.
The parameters of helical symmetry l and w0 were determined with one of the above-
described ways. Figure 2 shows comparisons of measured values of axial velocity
with the values calculated by formula (3.9) through the measured values of tangential
velocity. Solid and open circles represented the measured and calculated values of wz
respectively. The experimental data for flows with straight vortices are presented in
figure 2(a,b,c). For the case 2(b) we can compare the value of pitch found by (3.16),
h = 34.1 r0 = 11.2 cm, with the wavelength measured in experiment by Maxworthy
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Figure 3. Testing of the helical symmetry by comparing the vortex shape with a helix:
(a) left-handed vortex, (b) double helix; ——, the projection of the vortex axis on the vertical
plane; - - -, the sinus with parameters: (a) l = 56.5 mm, a = 39.5 mm, (b) l = 37.9 mm,
a = 27.8 mm.

et al. (1985), λ = 10.8 cm. Figure 2(d,e) shows the data for non-stationary swirl
flows where a pronounced precessing vortex core was observed. In the last case the
averaging in formulae (3.16) and (3.17) was carried out over time also. It follows from
the analysis of the data presented that the helical symmetry is realized in almost all
flow regions except the vicinity of the tube wall. In the wall region, such effects appear
as the boundary layer (due to the action of viscosity) and Görtler vortices (in the case
of a concave wall). Similar conclusions follow from the analysis of experimental data
obtained by Faler & Leibovich (1977), Kutateladze, Volchkov & Terekhov (1987) and
Guarga et al. (1985).

Otherwise the testing of helical symmetry may be done by estimating the quality of
the helical shape of the observed vortex structures (see photos in § 6). Such a procedure
was followed for the two regimes with pronounced helix-like vortex structures (figures
3a and 3b). The testing is as follows: the projection of the helix on a plane must
be a sinus. To obtain projections of the experimentally observed helical structures,
computer processing of the instantaneous video images of the air core, visualizing
the vortex axis, was done. The positions of vortex axis projections for single and
double vortices are compared with a sinus. Excellent correlation is found. Using these
pictures one can easily determine the pitch of helical symmetry. It is different for each
depicted vortex: h = 355 mm (l = 56.5 mm) in figure 3(a) and h = 238 mm (l = 37.9
mm) in figure 3(b).

One further important conclusion may be drawn from the analysis of parameters
l and w0 for flow regimes with identical values of swirl parameters and flow rate.
The values of the parameters of helical symmetry (see figures 2c,d ; 3a,b) are quite
different for each pattern of swirl flow. For this reason the use of l and w0 as the
main characteristics of swirl flow is confirmed.

The analysis performed points to the existence of helical symmetry in swirl flows
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Figure 4. Helical vortex filament in a cylindrical tube of radius R; ∆S is the element of the tube
cross-section across which the vortex filament passes.

for all types of swirlers and the possibility of describing swirl flows with an inviscid
fluid model.

3.3. Stream function and velocity field for an infinitely thin helical vortex filament in
a cylindrical tube

Let us consider a flow with an infinitely thin vortex filament twisted round an
imaginary cylinder of radius a (figure 4). This elementary vortex structure, like a
rectilinear vortex filament and a vortex ring, is the fundamental object in the theory
of vortex flows.

Initially we should refine the right-hand side of (3.13). For a vortex filament, the
vorticity is concentrated along the line L which represents the axis of a helical vortex
filament with a pitch of 2πl twisted round a cylinder of radius a. The circulation Γ ,
being the strength of the vortex filament, is a constant in this case and is connected
to the vorticity by Stokes formula:

∫
∆S
ω · n ds = Γ = const. Here ∆S is the surface

element across which the vortex filament passes, n is the unit normal vector to this
surface. Since only a single z-component of vorticity is included in (3.13), we choose
∆S as the surface element with its normal vector coinciding with the z-axis (see figure
4). Then we have

∫
∆S
ω · n ds =

∫
∆S
ωz ds =

∫
∆S
ωz r dr dϕ. If variables (r, χ) are used

the following equation may be obtained:
∫

∆S
ωz r dr dχ = Γ . Because the vorticity

is not zero only at the axis of an infinitely thin vortex filament with coordinates
(r = a, χ = χ0), the integrand is apparently expressed through the Dirac δ-functions:
ωz = Γδ(r − a) δ(χ− χ0)/r. Correspondingly, (3.13) takes the form

∆∗Ψ = 2B4w0/l − ωz = Γδ(r − a) δ(χ− χ0)/r. (3.18)

Using the method of the separation of variables (see, Okulov 1995), the solution of
(3.18) for the stream function is found in the form of infinite series

Ψ =
w0r

2

2l
− Γ

4π

{
a2/l2 + ln a2

r2/l2 + ln r2

}
− Γar

πl2

∞∑
m=1

m

{
I ′m(mr/|l|)Z ′m(ma/|l|)
I ′m(ma/|l|)Z ′m(mr/|l|)

}
cosm(χ− χ0),

(3.19)

where zm(x) = Km(x) − amIm(x) and am(x) = K ′m(mR/|l|)/I ′m(mR/|l|) are selected so
as to satisfy condition (3.14); Im(x) and Km(x) are the modified Bessel’s functions
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(the prime signifies the derivative). Here and below, the upper and lower lines in the
brackets correspond to the cases r < a and r > a respectively.

Substituting (3.19) into (3.11), we can write the components of the velocity vector
as

wϕ =
Γ

2πr

{
0
1

}
+

Γa

πr|l|
∞∑
m=1

m

{
Im(mr/|l|)Z ′m(ma/|l|)
I ′m(ma/|l|)Zm(mr/|l|)

}
cosm(χ− χ0),

wz = w0 − Γ

2πl

{
0
1

}
− Γa

π|l|
∞∑
m=1

m

{
Im(mr/|l|)Z ′m(ma/|l|)
I ′m(ma/|l|)Zm(mr/|l|)

}
cosm(χ− χ0),

wr = −Γa
πl2

∞∑
m=1

m

{
I ′m(mr/|l|)Z ′m(ma/|l|)
I ′m(ma/|l|)Z ′m(mr/|l|)

}
sinm(χ− χ0).


(3.20)

Note that when R→∞ we deal with the case of a helical filament in unbounded
space. Then am→ 0 and solution (3.20) for velocity components wr and wϕ coincides
completely with the results by Hardin (1982). The value of wz differs only by the
constant w0 that represents a translatory flow along the z-axis.

For error-free computation of the velocity field and the stream function it is
appropriate to separate the singularities from the solution in explicit form:

Ψ =
Γ

4π
(G+H), (3.21)

The singular term G is expressed through the elementary functions

G = −Car ln
ã2 + r̃2 − 2r̃ã cos (χ− χ0)

(R̃4/ã2) + r̃2 − 2r̃(R̃2/ã) cos (χ− χ0)
(3.22)

where x̃ = 2x exp [Cx − 1] / (Cx + 1) may be interpreted as distorted radial distances,
Cx = (1 + x2/l2)1/2, Car = (CaCr)

1/2. Here symbol x denotes a, r or R. The regular
remainder in (3.21) has the form

H = β
r2

l2
−
{
a2/l2 + ln a2 − Car ln ã2

r2/l2 + ln r2 − Car ln r̃2

}
− 4ra

l2

∞∑
m=1

{
Bm (r, a)
Bm (a, r)

}
cosm(χ− χ0), (3.23)

where

Bm(x, y) = I ′m

(
mx

|l|
)
Z ′m

(
my

|l|
)
− Ca,r

2mra

[(
x̃

ỹ

)m
−
(
x̃ỹ

R̃2

)m]
, β = 2πlw0/Γ .

The singular summand G contains the general information on the character of
the flow depending on the vortex parameters and permits a qualitative flow analysis.
Nonetheless, the existence of a singularity in the basic representation of the stream
function through series (3.19) does not allow the use of the differentiation operation
on formula (3.22) to obtain the expressions for the velocity components. Because of
this the main singularity of a velocity field (pole-like) is separated immediately in
series (3.20) for velocity components:

wr =
Γa

πl2
(Sr + Rr) ,

wϕ =
Γ

2πr

{
0
1

}
+

Γa

πr|l|
(
Sχ + Rχ

)
,

wz = w0 − Γa

2πl

{
0
1

}
− Γa

πl|l|
(
Sχ + Rχ

)
.


(3.24)
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Sr and Sχ are also written through the elementary functions of distorted radial
distances:

Sr = −Carl
2

2ra

(
r̃ã sin (χ− χ0)

r̃2 + ã2 − 2r̃ã cos (χ− χ0)

− r̃(R̃2/ã) sin (χ− χ0)

(R̃4/ã2) + r̃2 − 2r̃(R̃2/ã) cos (χ− χ0)

)
,

Sχ =
Ca/r|l|

2ra

({
0
−1

}
+

r̃2− r̃ã cos (χ−χ0)

r̃2 + ã2 − 2r̃ã cos (χ−χ0)

− r̃2 − r̃(R̃2/ã) cos (χ−χ0)

(R̃4/̃a2)+ r̃2 − 2r̃(R̃2/ã) cos (χ− χ0)

)


(3.25)

where Ca/r =
(
Ca/Cr

)1/2
, and remainders of series take the form

Rr =

∞∑
m=1

m

{
Bm (r, a)
Bm (a, r)

}
sinm (χ− χ0) , Rχ =

∞∑
m=1

{
BIm

BZm

}
cosm (χ− χ0). (3.26)

Here

BIm = Im

(
mr

|l|
)
Z ′m

(
ma

|l|
)

+
Ca/r |l|

2ma

[(
r̃

ã

)m
−
(
r̃ã

R̃2

)m]
,

BZm = I ′m

(
ma

|l|
)
Zm

(
mr

|l|
)

+
Ca/r |l|
2ma

[
−
(
ã

r̃

)m
−
(
r̃ã

R̃2

)m]
.

An analysis of (3.22)–(3.26) shows that when |l|→ ∞ the solutions obtained coincide
with the solution for a rectilinear vortex in a cylinder or a point vortex in a circle
(Lamb 1932).

It was established numerically that for a wide range of geometrical parameters
of a vortex filament, the remainders of series (3.23) and (3.26) are relatively small
in comparison to the main singular parts (3.22) and (3.25) in representations of the
stream function (3.21) and the velocity field (3.24). Hence the first of them may be
neglected. Owing to the simplicity of expressions (3.22) and (3.25) it was possible to
illustrate the flow considered for a wide range of vortex filament parameters. The
flow analysis was carried out on the basis of constructing both the iso-lines of a
stream function and projections of stream surfaces (stream tubes) on cross-sectional
and axial-sectional planes.

In figure 5 a comparison is made for iso-lines Ψ = const in an unbounded space (a)
and in a tube (b) for helix radius a = 0.9, velocity at flow axis w0 = Γ/h, circulation
Γ = 1, and helix pitch h = 2. All quantities are made dimensionless by tube radius
R and flow rate Q. As is seen the influence of the wall on the flow pattern is fairly
significant.

Figure 6 demonstrates the effect of h and w0 on the projections of streamlines on
horizontal and vertical sections of a tube (the projections of velocity vectors on cor-
responding planes are directed along the tangent to these curves). Note that w0 does
not influence the pattern of streamlines in the cross-section of the tube. As follows
from formula (3.20) for wz , the contribution of w0 may be interpreted as the transition
to a coordinate system moving with speed (−w0) along the z-axis. So the pattern of
streamlines in the longitudinal section of the tube is defined fully by w0 for other
parameters fixed. It is clear that w0 is related to the flow rate through the tube and
therefore it is of fundamental importance for interpretation of the swirl flow regimes
in a bounded space. For example, for w0 = 0, h = 1 the axial motion near the tube
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(a) (b)

Figure 5. Iso-lines Ψ = const (in the horizontal and vertical planes) for an infinitely thin
helical vortex filament in an unbounded space (a) and in a tube (b); - - -, imaginary bound-
aries of the tube in the space. The filament parameters: a = 0.9, w0 = Γ/h, Γ = 1, h = 2. All
the quantities are made dimensionless by tube radius R and flow rate Q (this is also true for
figures 8, 9, 11, 12).

axis is absent but there is intense axially directed flow in the vicinity of the tube wall.
At w0 = Γ/h, h = 1, on the other hand, the axial flow is absent near the wall and
exists inside the helix. Finally, at w0 = 0.5 = Γ/h, h = 1 the liquid outside and inside
the helix moves along the z-axis in opposite directions.

The effect of helix radius a on the streamline pattern in a tube is shown in figure 7
for different w0. If helix radius and velocity at the tube axis are small (a = 0.1,
w0 = 0) the flow pattern is close to the case of a rectilinear vortex filament. However,
by increasing w0 even at small a the effect of curving the filament is seen even in the
vicinity of the wall (see, w0 = Γ/h, a = 0.1). With the increase of the helix radius the
streamlines in the cross-section differ more strongly from the circular form, and the
flow pattern in the longitudinal plane (as in figure 6) is defined fully by the value
of w0.

Examples of calculating multi-vortex structures are described in § 6.2.

4. Axisymmetrical (columnar) helical vortices
4.1. One-dimensional flow with helical symmetry

We start considering this class of helical vortices with a finite size core with the
simplest particular case of axisymmetrical or columnar vortices. Our approach may
be clearly demonstrated by the example of comparison of the helical columnar vortex
with the Rankine vortex (figure 8): namely the Rankine vortex consists of uniformly
distributed rectilinear vortex filaments (figure 8a); the axisymmetrical helical vortex
in our model is a superposition of the helical vortex filaments (figure 8b,c).

If the vorticity distribution over the vortex filaments is given, the problem of
finding the velocity field is reduced to integrating the expressions (3.20). On the other
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h =1 h = 4

w0= 0

w0= 0.5 ¡/h

w0=¡/h

Figure 6. The effect of h and w0 on the streamlines (projections) for the case of a helical vortex
filament in a tube at a = 0.5. Arrows show the direction of the flow.

hand, this task may be solved without invoking the results of § 3.3. An analysis
of the governing equations shows that the condition of axial symmetry allows the
development of a fairly general model of axisymmetrical helical vortices in a rigorous
treatment. We assume ∂/∂χ ≡ 0, wr ≡ 0. Therefore the Helmholtz equation (3.12)
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a = 0.1

w0= 0

w0= 0.5 ¡/h

w0=¡/h

a = 0.5 a = 0.9

Figure 7. The effect of a and w0 on the streamlines (projections) for the case of a helical vortex
filament in a tube at h = 2.

satisfies any radial distribution of the axial component of the vorticity. It follows
from the vorticity definition that

wϕ =
1

r

∫ r

0

ωz(r) r dr. (4.1)
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(a) (b) (c)

wz wz wz

x
x x

Figure 8. Models of columnar vortices with uniform distribution of the elementary vortex filaments
within the core. (a) Rankine vortex consisting of rectilinear filaments. (b) A columnar vortex
consisting of right-handed helical vortex lines. (c) A columnar vortex consisting of left-handed
helical vortex lines.

Since the axial component of the velocity remains connected with wϕ by relation (3.9),
the expression for wz may be written as

wz = w0 − 1

l

∫ r

0

ωz(r) r dr. (4.2)

The condition of axial symmetry significantly simplifies the problem of determining
the static pressure from the Euler equations. Actually, (3.4) becomes an identity and
(3.3) is reduced to the equation ρw2

ϕ /r = ∂p/∂r, from which

p = p0 + ρ

∫ r

0

w2
ϕ

dr

r
. (4.3)

Here p0 is the static pressure at the tube axis. It is seen from (4.3) that the axial
component of the velocity does not influence the pressure in swirling axisymmetric
flow. Furthermore, this important feature will be used for the estimation of vortex
parameters from the distribution of the bottom pressure (see § 4.2).

We shall consider three important examples of the simplest distributions of vorticity:
uniform, hat-type and Gaussian (see table 1). From (4.1) and (4.2) the velocity
components may be written as

wϕ =
Γ

2πr
Φ(r), wz = w0 − Γ

2πl
Φ(r), Φ(r) =

2π

Γ

∫ r

0

ωz(r) r dr. (4.4)

As seen from table 1 and (4.4) profiles of the circumferential velocity as well as the
pressure distribution coincide with the corresponding ones in Rankine, Scully and
Lamb vortices (Hopfinger & van Heijst 1993, Scully 1975). At the same time the
axial velocity non-uniformly varies with the radius and is inversely proportional to
the pitch of helical symmetry.

For the step-like distribution function we can consider a more general case with
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Model I II III

ωz
πε2

Γ

{
1, r < ε
0, r > ε

(
1 +

r2

ε2

)−2

exp

(
− r

2

ε2

)
Φ(r)

{
r2/ε2, r < ε

1, r > ε
r2

r2 + ε2
1− exp

(
− r

2

ε2

)

∆p

ρ

8π2ε2

Γ

{
r2/ε2, r < ε

2− ε2/r2, r > ε
r2

r2 + ε2

2 ln 2− ε2

r2

(
1− exp

(
− r

2

ε2

))2

+2Ei

(
− r

2

ε2

)
− 2Ei

(
−2

r2

ε2

)
Table 1. Dimensionless vorticity, velocity function and pressure for the three models of

a columnar vortex.

the vorticity distributed over the annular section b1 6 r 6 b2:

ωz =
Γ

π(b2
2 − b2

1)

{
0, r < b1, r > b2

1, b1 6 r 6 b2
with Φ (r) =


0, r < b

r2 − b2
1

b2
2 − b2

1

, b1 6 r 6 b2

1, r > b2.

Such ‘hollow’ vortices may appear under the near-wall flow swirling and will be used
below for constructing more complex models of vortices (see § 4.2). The pressure field
for the annular helical vortex takes the form

p = p0 − ρΓ 2

8π2



0, r < b1

1(
b2

2 − b2
1

)2

(
r4 − b4

1

r2
− 4b2

1 ln
r

b1

)
, b1 6 r 6 b2

− 1

r2
+

2

b2
2 − b2

1

− 4b2
1(

b2
2 − b2

1

)2
ln
b2

b1

, r > b2,

Unlike the Rankine vortex, this model allows for a great variety of axial velocity
distributions depending on the value and sign of vortex pitch l and the velocity at
the axis w0. In the limit case of l→ 0, Γ→ 0, Γ/l = const, (b2 − b2)→ 0 the annular
vortex degenerates into a vortex sheet localized at the cylindrical surface r = b2 = b2

inducing axial velocity only.
The velocity field for the Gaussian vorticity distribution

wϕ =
Γ

2πr

[
1− exp (−r2/ε2)

]
, wz = w0 − Γ

2πl

[
1− exp (−r2/ε2)

]
(4.5)

is shown to have the same structure as the empirical relations which have been
widely used for processing experimental data on swirl flow (Faler & Leibovich 1977;
Leibovich 1978, 1984; Escudier 1988; Alekseenko & Shtork 1992):

wϕ =
K

r

(
1− exp

(−αr2
))
, wz = W1 +W2 exp

(−αr2
)

(4.6)

where K, W1, W2, α are empirical constants. The swirl velocity distribution in (4.6)
corresponds exactly to the vortex found by Burgers (1940) which is the solution of
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Figure 9. The radial profiles of tangential, wϕ, and axial, wz , velocity components and pres-
sure drop, ∆p/ρ, in the columnar vortices with various distributions of the axial component
of vorticity, ωz: ——, ωz is constant in the core; -·-·-, hat-type dependence; - - -, Gaussian dis-
tribution. Comparison of the models is made for conditions: (a) circulation, Γ , is the same,
(b) the pressure difference between the vortex centre and periphery is the same.

the Navier–Stokes equations. The axial component is similar to that found in a far
wake (see, Lessen, Singh & Paillet 1974).

Profiles (4.6) have not been considered previously as the unified solution of fluid
motion equations. A direct comparison of the exact solution (4.5) and empirical
formulae (4.6) yields

Γ = 2πK; l = K/W2; w0 = W1 +W2; ε = α−1/2.

Thus, the theoretical solution obtained makes the refinement of the physical sense of
the empirical constants possible and explains the good agreement between formulae
(4.6) and the experiment. When comparing (4.5) with the experiment, it is better to
use the radius of the location of swirl velocity maximum rm = ε

√
1.256 instead of

scale ε.
In figure 9 all three solutions presented in table 1 are compared in two different

ways. It is assumed that w0 = 0 and l = −1. The value of ε is chosen from the
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requirement of the same values of rm (ε = 1 for columns I, II in table 1 and ε = 1/1.12
for column III). The first method of comparison is to compare vortices with the same
circulation Γ = 2π. As follows from figure 9(a), solutions I and III are the closest to
each other. Solution I has a more simple and vivid form since one can easily determine
the core size from the break point of the velocity profile. Because of this we prefer to
use model I for further analysis. The essential difference of the models I and III from
II is explained by the fact that the vorticity in the last vortex is less concentrated.

A more correct comparison from our point of view may be made if the same values
of the pressure difference ∆p at the vortex axis and periphery (r→∞) are used for
the vortices compared. But then the vortex circulations will be different:

Γ1 = 2π, Γ2 = 2π
√

2, Γ3 = 2π/(1.256 ln 2)1/2 .

In such a case the profiles of vorticity, velocity and pressure in all three solutions
start to correspond to each other better (especially for pressure, see figure 9b). An
important fact follows from comparing the calculated pressure distributions at the
point of the swirl velocity maximum rm. For vortices I and II the point rm coincides
with the point r0.5 where the pressure equals half of the difference between the values
of pressure at the vortex axis and the periphery. Analysing the pressure distribution for
vortex III one can see that here points rm and r0.5 also almost coincide. Consequently
the vortex radius may be determined as the point where pressure equals half of the
full pressure drop. Recall that the pressure in the experiment is reckoned from its
value at the bottom.

Thus generalized models of columnar helical vortices can be developed from the
arbitrary distribution of an axial vorticity component along the radial coordinate.
They generalize the known models by Rankine, Lamb, Burgers etc. and permit one
to obtain various profiles for both tangential and axial components of velocity.

4.2. Experimental study of vortices with a rectilinear axis

The main purpose of the work is to study helical vortices, primarily vortex filaments
of helical form. Hence the initial experimental task was to generate swirl flows with
a vortex filament (or, otherwise, concentrated vortices). In any vortex chamber, con-
centrated vortices are formed by putting a diaphragm in the exit orifice (Escudier,
Bornstein & Zehnder 1980; Shtym 1985). Here we shall consider in detail the forma-
tion of the vortex filament in the tangential chamber, shown in figure 1, with an exit
orifice diameter of 40 and 70 mm.

The most remarkable feature of the swirl flow in a chamber with a diaphragmed exit
is the localization of vorticity near the chamber axis. The smaller the diameter of the
exit orifice, the greater the effect. A sharp increase in the axial component of vorticity
ωz = Γ/πε2 at the chamber centre occurs due to the decreasing ε and is accompanied
by a drastic pressure drop at the axis (see table 1). Owing to the last effect a cavity
appears at the vortex axis in the form of a continuous thin air filament of constant
thickness with diameter up to 0.1 mm (figure 10). The air filament is formed of tiny
air bubbles introduced into the liquid with the purpose of flow visualization; and this
filament extends from the bottom to the exit orifice (and further). By decreasing the
air supply and for a low flow rate of liquid the air filament becomes so thin that
it breaks into separate tiny bubbles which may be used as particle markers for flow
visualization. By this means the formation of a gaseous cavity is an effective way of
visualizing the axes of concentrated vortices in fluid.

The experimental data on the profiles of tangential and axial velocities are presented
in figure 11 for de = 40 mm. In this case the vortex radius is 1.8 mm and measurements
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(a) (b)

Vortex
axis

Figure 10. Visualization (a) and schematic (b) of a flow with the generation of a concentrated
vortex with a rectilinear axis. de = 70 mm, ze = 560 mm, Re = 104, S = 2.9. The light line in the
photograph is the air filament visualizing the vortex axis.
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Figure 11. Profiles of the tangential (a) and axial (b) velocity components in a vortex chamber
with a small exit orifice. de = 40 mm, ze = 430 mm, Re = 8 × 103, S = 3.•, experimental points;
——, empirical formula (4.6).
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may be taken only with the method of stroboscopic visualization. The velocity
distributions can be described using empirical dependencies (4.6) with the following
constants: K = 5, W1 = 0.3, W2 = 1.6 and α = 0.3. The experimental profiles permit
the classification of the observed rectilinear vortex as a vortex filament since the
vortex diameter (3–10 mm) is much less than the vortex length (430–560 mm) and
the cross-sectional size of the chamber (188 mm).

To apply the exact solutions presented in table 1 to the description of experimental
profiles, it is necessary to know the basic characteristics of the vortex: circulation Γ ,
core size ε, pitch of helical symmetry l, and velocity at the vortex axis w0. Of course,
they may be recalculated through the empirical constants K, W1, W2 and α = 0.3;
however it should be noted that some approximations are required to determine
the constants. So, Garg & Leibovich (1979) generalize the experimental data with
relation (4.6) using the method of least squares. Because of this, preference must be
given to direct methods of determining the vortex model parameters. The methods
of calculating l and w0 have been described in § 3.2 and the procedure for finding Γ
and ε will be given below.

In vortex models I and II assumed in § 4.1, ε coincides with rm and for model III
ε = rm/1.12, i.e. ε may be considered known if rm is measured in the experiment. Also
if we know the value of maximum velocity wϕmax the circulation is determined using
the formulae

Γ = 2πrmwϕmax for I and II; Γ = 4πrmwϕmax/0.715 for III.

By this means the vortex models will be completely defined if in addition to l and w0

the location and value of maximum tangential velocity is known.
One can calculate ε and Γ through the pressure distributions. If we find point r0.5

then according to the theoretical models of the previous section it may be identified
with the point rm. On the other hand if the value of the pressure drop ∆p0 is known
the circulation may be determined as Γ = η2πr0.5(∆p0/ρ)0.5 with η2 = 1, 2 and 1/ ln 2
for these three models respectively.

In general it is very difficult to determine the characteristics of both the velocity field
and the static pressure field due to the small size of the core, the three-dimensionality
of the flow with helical vortices and the ever present unsteadiness (in particular,
precessing motion and turbulence). Nonetheless, some vortex parameters may be
estimated with relative ease by measurement, for example, of the bottom pressure
(Kutateladze et al. 1987). It should be expected, due to thin boundary layer, that
the distributions of static pressure at the chamber bottom and the flow core (in the
vicinity of the bottom) would be identical. Of course, the case of vortex breakdown,
which appears in flows with a marked value of the axial pressure gradient (Escudier
1988), should be excluded. In the absence of vortex breakdown one can reconstruct
the swirl velocity field and determine the other characteristics, in particular the vortex
core size, using pressure measurements.

In figure 12 the radial distributions of static pressure at different cross-sections of
the chamber and at the bottom are compared. It is clear that the head tube is not
acceptable for measuring in the vicinity of the vortex axis. Nonetheless comparison
of experimental data in areas available for measurements shows that the pressure
profiles do not change with chamber height and correspond to the bottom pressure.
A similar conclusion was reached by Kutateladze et al. (1987) for a diaphragmed
chamber of different construction. Because of this we shall analyse the data on the
bottom pressure and try to use them for the estimation of the parameters of a vortex
filament interacting with a flat bottom.
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In figure 13 the data on bottom pressure are generalized in the coordinates [∆p/∆p0,
2r/m] for different values of Reynolds number Ren and swirl parameter S . The
diameter of the exit orifice de was fixed and equal to 70 mm. Here ∆p0 = |p0 − p∞|,
p0 is the pressure at the vortex axis, p∞ is the pressure at the periphery (at the sidewall
of a channel), Reynolds number Ren = Vndn/ν, Vn is the velocity at the nozzle exit,
dn is the hydraulic diameter of the nozzle.
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In figure 14(a) the experimental data on rm and r0.5 are shown against the diameter
of the exit orifice de. The scale rm is usually identified with the radius of the concen-
trated vortex. Here our data coincide with measurements by Escudier et al. (1980)
for a vortex tube with a slot entrance. The coincidence of the values of rm and r0.5 is
the most remarkable fact. This means that the vortex radius may be determined from
the point where the static pressure equals half of the full pressure drop. The same
conclusion follows from the above analysis of theoretical models.

Attempts to theoretically calculate rm have been made by Abramovich (1951) on
the basis of the maximum flow rate principle and by Goldshtick (1981) by using
the principle of minimum flux of kinetic energy. Formulae are obtained in which the
relative size of a vortex 2rm/de is expressed through the construction parameter of a
vortex chamber mc = 4Σ ′/(πded), where Σ ′ is the area of the nozzle cross-section, d is
the diameter of the conventional circumference (see figure 1). It is more convenient
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vorticity. ◦, •, experiment; ——, formula (4.4).

to use the simple empirical formula by Ovchinnikov & Nikolaev (1973):

2rm/de = 0.35m−1/2
c (4.7)

which is valid for de/2Rc > 0.1 and mc > 0.1. Here Rc is the vortex chamber radius.
The measured values of the maximum tangential velocity are presented in figure

14(b), also in the form of dependence on the diameter of the exit orifice. V ′ is
the velocity component at the nozzle exit parallel to the tangential velocity in the
chamber.

A simple evaluation of wϕmax may be made on the basis of profile (4.5) assuming
that it is valid up to the wall, i.e. r = Rc (Goldshtick 1981). As this is the case, V ′ is
considered to be the velocity at the wall

wϕmax/V
′ = 0.715Rc/rm. (4.8)

rm may be calculated, for example, by using empirical formula (4.7) or in other ways.
So the calculated curves in figure 14(b) are obtained with (4.8) by using the model
by Goldshtick (1981) for rm. Otherwise, the maximum tangential velocity may be
determined by rarefaction ∆p0 at the vortex centre, for example, with the Rankine
model: wϕmax = (∆p0/ρ)1/2. The values of wϕmax calculated by these means are in
good agreement with the direct measurements (see open circles in figure 14b). The
level of rarefaction depends strongly on the swirl parameter, the flow rate, and the
diameter of the exit orifice.

The main conclusion from this analysis is that characteristics used in the theoretical
model of § 4.1 can be found by means of performing the more simple experimental
task of studying the interaction between a vortex and a flat bottom. Moreover it
is even possible to develop heuristic models like (4.7) and (4.8) for determining
vortex parameters. As for testing theoretical models, it should be noted that extensive
comparisons of profile (4.6), which is equivalent to model (4.5), were made with
measurements by Leibovich (1984), Escudier (1988). Since models I and III are close
to each other, it should be expected that a vortex model with uniform vorticity
distribution in the core would be acceptable. As an example, a comparison of an
annular vortex model with the data obtained by Kutateladze et al. (1987) is made in
figure 15. These results point to the possibility of a vortex with annular distribution
of vorticity existing.
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By this means a generalized model of an axisymmetric helical vortex with an ar-
bitrary distribution of the axial component of vorticity along the radial coordinate
(in particular, the three different cases considered) allows the obtaining of various
velocity and pressure fields describing the experimental data well. Also, methods of
determining the vortex parameters for these models are proposed by using measure-
ments at the chamber bottom (or chamber endwall) where the vortex interacts with
the plane.

4.3. Vortex composition

A qualitatively new vortex structure appears in the chamber when the orifice of the
diaphragm is increased. The swirl velocity profile begins to differ fundamentally from
the empirical profiles (4.6) (or the exact solution (4.5)) and a trough in the axial
velocity profiles arises.

In figure 16 the velocity distributions are shown for two sections for a relatively
large diameter exit orifice de = 100 mm. These data are obtained by the Pitot tube
since the vortex radius is fairly large (rm = 14 mm). Here rm is determined from the
location of the maximum tangential velocity wϕmax. These results for velocity profiles
as a whole correspond to measurements obtained by Escudier et al. (1980) with LDA
in a vortex chamber with a tangential supply along the whole chamber length and also
to data by Brücker & Althaus (1992) obtained with PIV in a chamber with an axial
swirler. A feature of these flows is that the axial velocity has a local maximum at some
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Figure 17. Combination of two columnar vortices.

distance from the flow axis and the tangential component deviates fundamentally from
a dependence of (4.6) type. With a larger r/rm > 2 the experimental points differ
so strongly from (4.6) that Escudier et al. (1982) modified the velocity profile by the
linear addition with the empirical coefficient ω1

wϕ =
K

r

[
1− exp

(−αr2
)]

+ ω1 r.

However the above formula does not correspond to the Burgers solution which has
a clear physical sense. Attempts to describe the axial velocity profiles in a simple
way failed due to their non-monotonic behaviour. Nevertheless we could solve such
a problem in the framework of vortex models I and III.

Initially the question arises about the existence of helical symmetry in such complex
flows. One could consider this question using the velocity profiles (figure 16) measured
far away from the chamber bottom at a distance of 323 mm where the influence of
the bottom is negligible. Let us divide the flow into two zones. The first zone includes
the area from the axis to the point of maximum axial velocity r∗. The second zone
represents the annular area between r∗ and the periphery (chamber wall). With the
results of § 3.2 the parameters of helical symmetry may be determined separately for
each zone as follows: l = −46.7 mm, w0 = 0.12 m s−1 for zone 1 and l = 46.7 mm,
w0 = 0.80 m s−1 for zone 2. As is seen, the pitch of helical symmetry is the same in
magnitude but has a different sign (i.e. the circumferential component of the vorticity
has alternating sign). This result leads to the conclusion that the fairly complex
behaviour of velocity distributions may be modelled by the combination of several
simple vortices. Such a composite vortex is assumed to contain two non-intersecting
areas (in this case, zones 1 and 2). An example of the combination of two vortices
with rectilinear axes is shown in figure 17. Here the first vortex is associated with
the cylindrical area of radius b1 = r∗ inside which the vorticity is constant and ω is
directed at some angle to the z-axis (left vortex). The second vortex is localized in an
annular area with the radii b1 and b2 inside which the vorticity is also constant but
the vorticity vector is oppositely oriented (right vortex). The resulting velocity field
is determined as the sum of the contributions from the two vorticity areas due to
the linear relation between the vorticity and the velocity. One can construct various
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Figure 18. Testing of the helical symmetry in a swirl flow with the assumed combination of two
vortices: (a) data by Brücker & Althaus (1992) l/R = 0.67, w1 = 0.72 cm s−1, w2 = 1.53 cm s−1,
r∗/R = 0.31; (b) data by Shtork (1994) l = 46.7 mm, w1 = 0.12 m s−1, w2 = 0.80 m s−1, r∗ =
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4, measured values of axial velocity; ◦, axial velocity calculated through the measured values of
tangential velocity using the condition of helical symmetry.

combinations of the different areas (including non-annular ones) and with a different
ω orientation.

In order to justify theoretically the possibility of combining two vortices let us
analyse solution (3.19) for the stream function in the case of an elementary helical
filament. If the summand containing w0 in (3.19) is excluded it is easy to see that
the solution is invariant with respect to the sign of l. In essence, w0 is an integration
constant and should be determined separately in each zone. Thus, there is no problem
when considering the term with the ratio w0/l in (3.19). Now we may construct the
vortex model combinating areas containing left and right helical filaments (except for
the case of intersecting left and right filaments). The above-introduced annular areas
are not in contradiction with this requirement.

Using the hypothesis on combining right and left vortices in zones 1 and 2 one can
write the resulting relation for testing helical symmetry which connects the tangential
and axial velocities (an analogy of relation (3.9) for testing helical symmetry in simple
flows) as

wz =

{
w1 + rwϕ/|l|, r < r∗
w2 − rwϕ/|l|, r > r∗

≡ w0 +
r∗wϕ (r∗)
|l| −

∣∣∣∣rwϕ − r∗wϕ (r∗)
l

∣∣∣∣. (4.9)

Here w1 and w2 are the integrating constants.
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Figure 19. Comparison of experimental velocity profiles with exact solution (4.7) for a combination
of two vortices. •, experiment by Brücker & Althaus (1992); ◦, experiment by Shtork (1994), data
are the same as in figure 18. Calculation by (4.7): - - - , right-handed vortex; -·-·-, left-handed vortex;
——, combined vortex.

It follows from (4.9) that constant w1 equals w0 and w2 = w0 + 2r∗wϕ(r∗)/|l|. The
last expression follows from the condition of the velocity matching at the boundary
of the two zones. Upon the satisfaction of condition (4.9) one can talk about the
existence of generalized helical symmetry in the flow with a non-monotonic profile of
the axial velocity and respectively about the composition of the two helical vortices.

The results of testing the helical symmetry for the aforementioned regimes are
presented in figure 18. These data show that the generalized condition of helical
symmetry is confirmed with high accuracy in the experiments by Brücker & Althaus
(1992) and here (see figure 16). Because of this we may state that in the regimes
described a combined helical vortex occurs.

To approximate the velocity field for these vortices with a rectilinear axis it is
apparently sufficient to use the combination shown in figure 17. The velocity field
induced in each area is calculated by model I with values of l equal in magnitude
and different in sign. The parameters of the basic vortices are chosen so as to reach
the best agreement between the computation and the experiment. As is seen from
figure 19 the profile of the axial component, wz , is described very well. The situation
with wϕ is worse. This is connected with the fact that the theoretical model at the
point of maximum wϕ always has a break since the vorticity at this point undergoes
a jump.

Returning to figure 16, note one important feature: the swirl velocity profile
does not change with the chamber height whereas the axial velocity profile varies
significantly, namely, the velocity maximum is shifted to the vortex axis as the exit
orifice is approached. The similarity of the swirl velocity profiles with chamber height
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was also noted by Escudier et al. (1980). This feature also relates to flows with a
combination of two vortices. Taking into account that for axisymmetric flow the
pressure is determined by a single tangential component of velocity (4.4), one can
suggest the possibility of finding the characteristics of the combined vortex by using
the data on the bottom pressure as was done for the vortex filaments in § 4.2. Figure
12(b) confirms this suggestion. Actually, both for simple vortices and flows with a
combination of two vortices the pressure profiles at the bottom and in the flow are
identical.

Thus we shall complete our study on flow regimes with the combining of vortices
by describing the results of the measurements of the bottom pressure. It can be shown
that the pressure data for different diameters of the exit orifice of the chamber are not
generalized in the coordinates used in § 4.2. The approach applied to jet flows is found
to be acceptable. As the length scale we use the value of the radial coordinate r0.5 where
the pressure change equals half of the pressure drop p0. Then the bottom pressure
profiles for different de generalize well in the coordinates [ ∆p̄ = ∆p/∆p0, r̄ = r/r0.5 ]
(figure 20). The experimental points are, then, described by model II rewritten in the
dimensionless form

∆p̄ = −1/
(
1 + r̄2

)
. (4.10)

By this means the hypothesis on the possibility of the appearance of swirl flow regimes
with a combination of two vortices allows the description of complex empirical profiles
of the radial distribution of the velocity. However, the importance of the combination
principle is not only in the approximation of the empirical velocity profiles but also
in the possibility of giving a physical interpretation of the flows. Later the principle
of combination will be applied to an explanation of the structure of more complicated
helical vortices.
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Figure 21. Schematics (a, d ) and visualization (b, c) of flow in the vortex chamber with an open
exit (diaphragm is absent). (b, c) z = 235 mm, Re = 4.3 × 104, S = 3, photographs are taken at
different instants in time. One can clearly see the precessing vortex core.

5. Rotating helical vortex
5.1. Precessing vortex core

Let us continue a description of flow regimes in the square vortex chamber sketched
in figure 1. The further increase in diameter of the exit orifice (up to fully opened)
leads to a new significant realignment of the flow. The flow loses its axial symmetry
and becomes non-stationary with a pronounced precessing helical vortex (figure 21).
The loss of axial symmetry is not related to the location of the side chamber outlet.
Furthermore, in this section we shall consider the flow region below the level z = z∗
(see figure 1) assuming that the configuration of the exit part of the chamber at z > z∗
has no influence on the flow in region z < z∗, since the main effect is the existence of
a sharp expansion of the flow cross-section at z = z∗. Note that the helical symmetry
in the flow is conserved as is seen from figure 2(d ).

In figure 21(a), the structure of the swirl flow in a vortex chamber with an open exit
is shown schematically. The feature of the flow is the formation of a large near-axis
zone of reverse flow with the boundary marked by a dashed line. Also, the maxima of
both the axial and the tangential velocity are shifted towards the periphery as follows
from the profiles averaged over time. Many works (see Shtym 1985) are devoted
to the analysis of flow regimes averaged over time. We are interested, however, in
non-stationary (unsteady) phenomena.
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As follows from the visual observations, a concentrated extended vortex is formed
at the boundary of the zones of upflow and downflow. This vortex rotates together
with the flow around the geometric axis of the chamber (see photographs and sketch
in figure 21b,c,d ) and has a weakly pronounced helical structure. In addition to testing
the helical symmetry for mean velocity profiles (figure 2d ) this also gives grounds
for applying the theory of flows with helical symmetry for the description of such
regimes.

The rotating concentrated vortices which arise in an unstable swirl flow are usually
called precessing vortex cores (PVC). The usual descriptions of PVC are associated
with other conditions of the experiment; besides which, the spatial structure of the
precessing vortex has not been identified. Kutateladze et al. (1987) observed precession
of the axis of swirling air flow accompanied by sound generation in a cylindrical
channel with a slot tangential supply and an opened exit. Gupta et al. (1984) examined
the precession in swirlers and swirl burners and analysed the influence of the PVC on
combustion. According to Gupta et al. (1984) and Sozou & Swithenbank (1969), the
precessing vortex core is one of two possible states of swirl flow arising after vortex
breakdown. The pattern with the PVC is characterized by the existence of a large
near-axis zone of recirculation with a high rate of reverse flow. At the exit of a swirler
large-scale three-dimensional disturbances are generated. Combustion strongly affects
the PVC. In particular, the amplitude and frequency of the pulsations grow in the
flow with combustion of the premixed components (Gupta et al. 1984).

In the vortex chamber considered, the most pronounced character of the PVC is
observed in the range of angles of nozzle turning γ = 5◦–10◦ (see figure 1). However,
the vortex is not always continuous and stable. Flow visualization in the cross-section
of the chamber shows that sometimes two or more vortices are formed which merge
thereafter into a single core again. Looking along the air core of the vortex one can
see that it is disrupted occasionally into separate parts, which move in a circular path
and then merge again into a continuous core.

Data on the precession frequency versus the flow rate are presented in figure 22(a,b)
in dimensional and dimensionless forms for different values of the swirl parameter.
The measurements are made by the electrodiffusion probes for velocity, the resistance
strain gauge for pressure, and also on the basis of visual observations (in the last
case the time period of 100 vortex revolutions was measured with a chronometer and
the total error was of the order of 4%). Here f is the frequency of vortex precession,
Sh = fm/wm is the Strouhal number, Re = wmm/ν is the Reynolds number, wm is the
mean flow rate velocity, S is the swirl number (see (2.2)). As is seen, the frequency
grows linearly with the flow rate. This was also found for other types of swirlers
(Chanaud 1965; Cassidy & Falvey 1970). The Strouhal number is self-similar relative
to the Reynolds number but depends on the swirl parameter. When S 6 4 the Strouhal
number increases linearly with S . However, at higher values of S the Strouhal number
becomes weakly dependent upon S and has an approximately constant value. Note
that the data at large S are not plausible due to the strong instability of the flow
and the absence of pronounced PVCs. The existence of a linear relation between
f and Q in a wide range of flow rates was the basis for creating vortex flow rate
meters.

Many investigators do not identify the PVC with the motion of large-scale vor-
tex structures (helical vortices). Some of them note that the appearance of PVCs
is accompanied by the formation of a counterflow along the axis of the swirl flow
(Yazdabadi et al. 1994). However as was shown in § 3.3, the existence of a counterflow
may serve as proof of the generation of a helical structure. The lack of knowledge
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about the spatial structure of a flow is explained by the complexity of experimentally
studying non-steady-state three-dimensional swirl flows (see the review by Alekseenko
& Okulov 1996). It is easy to observe the PVC in a plane perpendicular to the flow
axis (figure 21). The PVC is seen as a bubbly area moving along the circumfer-
ence. However, it is difficult to construct the actual spatial geometry of the flow
by using the plane pattern. The quantitative flow characteristics are also measured
in that plane. Usually the mean velocities and pressure along the radial coordinate
are determined. Only Mollenkopf & Raabe (1970) and Yazdabadi et al. (1994) ob-
tained distributions for the velocity components over the entire cross-section using
the technique of phase averaging. Such results make it possible to establish the pre-
cession frequency and the existence of a reverse flow rather than the spatial flow
structure.

5.2. Helical vortex with finite-size core

The solution constructed in § 3.3 is not really acceptable for the theoretical description
of rotating helical vortices since the self-induced velocity of an infinitely thin filament
equals infinity. In reality, the vortex core always has a finite size. In accordance
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with this, let us construct a model of a vortex having a helix-like core with a
round cross-section of radius in a plane perpendicular to the vortex axis (figure 23).
We consider the simplest distribution of vorticity to satisfy the Helmholtz equation
(3.12), i.e. ωz = const within the core. The velocity field induced by such a vortex
may easily be represented through solution (3.20) assuming that the vortex is the
superposition of infinitely thin vortex filaments uniformly distributed within the vortex
core. Note that vorticity modulus, ω, is not constant because the vortex filaments
in such a vortex are entangled and the inclination of the vorticity vector varies
over the vortex cross-section. Actually, it follows from the geometric construction
that

ωz = ωl/
(
l2 + r′2

)1/2
.

Here r′ is the radial coordinate of the vortex filament. It is seen that at ωz = const
and l = const the value of ω grows with distance r′.

We represent solution (3.20) for an infinitely thin helical vortex filament with
circulation Γ as w = ΓF , where F is a function of the filament geometry only. For
the continuous distribution of vortex filaments we can write for a thin vortex tube
the differential relation

dwε = FdΓ ,

where F is the same function as for an infinitely thin vortex filament, dΓ is the
circulation of the separated vortex tube with cross-sectional area dsn, subscript ε
means the solution for the vortex with core radius ε. It is more convenient to seek a
solution for the horizontal section (z = 0) of the vortex tube with area sz . We have
from the Stokes theorem

dΓ = ω n dsn = ω dsn = ωzdsz.

From this it follows that Γ = ωzsz , emphasizing that Γ is the circulation in a helical
vortex with a finite size core. The area of the cross-section of the helical vortex in the
horizontal plane is

sz =

∫
sn

(
l2 + r′2

)1/2

l
dsn .

In the light of these relations we can obtain an equation for the determination of the
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velocity induced by a helical vortex with a finite-sized core:

wε(r, ϕ, z) =

∫
FdΓ =

∫
ωzFdsz =

Γ

sz

∫
Fdsz

=
1

lsz

∫ ε

0

∫ 2π

0

(
l2 + r′2

)1/2
F (r, ϕ, z; r′, ϕ′, z′) σdσdθ. (5.1)

The integration is done over the circle of radius ε with its centre at r′ = a, ϕ′ = ϕ0,
z′ = 0 (figure 23). The local polar coordinates σ, θ with their centre at point (a, ϕ0, 0)
are connected with the coordinates of the basic cylindrical coordinate system r′, ϕ′, z′
by the relations

r′ cos (ϕ′ − ϕ0) = a+ σ cos θ,

r′ sin (ϕ′ − ϕ0) = σ sin θ cos α,

z′ = −σ sin θ sin α,

where α is the angle between the vortex axis and the z-axis (tan α = a/l).
To examine the possibility of describing actual flows by using the above approximate

model, we shall compare the calculations according to (5.1) with the experimental data.
As is noted in the previous section most experimental data for rotating helical vortices
represent averaged flow characteristics at a fixed point of the radial coordinate. Taking
into account the rotation of helical vortices, averaging over time may be replaced by
averaging over the angular coordinate ϕ. We find the mean velocities for model (5.1)
using this method as

〈wε〉 =
1

2π

∫ 2π

0

wε dϕ. (5.2)

Substitute (5.1) into (5.2) and change the sequence of integration. Allowing for
integrals of the series involved in solution (3.20) being zero we reduce the task of
finding averaged velocities to the calculation of the integral F(r):

〈wrε〉 ≡ 0, 〈wϕε〉 =
Γ

2πr
F(r), 〈wzε〉 = w0 − Γ

2πl
F(r),

F(r) =
1

Scz

∫
Scz

{
0, r < r′
1, r > r′

}
dS ′. (5.3)

Here Scz is the area of the cross-section of the core with plane z = const. The integral
in (5.3) equals the area of the intersection of a circle of radius r with cross-section Scz .
The ratio of the areas in (5.3) does not vary if both figures are projected on the plane
perpendicular to the helical vortex axis. By this means we find that F(r) = S (0)/πε2

where S (0) is the area of the intersection of circle σ = ε with the ellipse given by
formula

(a+ σ cos θ)2/l2 + (σ sin θ)2/(a2 + l2) = σ2.

Returning to the aim announced previously let us estimate the value of model (5.1)
or its consequence (5.3) to the description of bounded intensively swirling flows. For
this purpose we shall compare the calculations according to formula (5.3) with the
experimental data on tangential and axial velocity distributions in various vortex
chambers. Figure 24(a) presents the velocity profiles in a cylindrical chamber with
a tangential swirler and closed front endwall (Kutateladze et al. 1987). The data for
our chamber with a square cross-section and an open exit are shown in figure 24(b).
All flows are characterized by the formation of a precessing vortex structure. Only the
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Figure 24. Averaged velocity profiles in a swirl flow with a precessing vortex core: ——, calculation
by formula (5.3) for a rotating helical vortex; •, experiment. (a) Kutateladze et al. 1987 (near-wall
swirl jet in a channel with a closed endwall, x = 175 mm); (b) measured data (tangential nozzle
swirler, chamber without diaphragm, Re = 3.2× 104, S = 1, z = 63 mm).

mean flow characteristics were measured. Because of this (5.3) is used for comparison.
Necessary parameters of vortex structures have the values, respectively:

Γ = 5.15 m2 s−1; l = −0.076 m; a = 0.011 m; ε = 0.025 m; w0 = −3.5 m s−1

and

Γ = 0.16 m2 s−1; l = −0.078 m; a = 0.028 m; ε = 0.057 m; w0 = −0.09 m s−1.

One can draw the following conclusions on the basis of the comparison: the
proposed model describes the experiment well even for ε of the order of a or l;
in the various apparatuses, swirl flows of similar structure are formed which may
be represented through superposition of translational and pure helical motions in
accordance with (3.9).

5.3. Precession frequency

The exact solution for the velocity field induced by a helical vortex filament in a
tube (see § 3.3) permits the stricter derivation of a formula for the angular velocity of
vortex rotation in a tube.

The first result for the angular frequency of the helical disturbances travelling
round the original vortex, Ω, in the long-wave (l/a � 1), small-amplitude (a/ε � 1)
limit was obtained by Kelvin (1880)

−Ω̂ = −Ω 4πl2

Γ
= ln

2l

ε
+ 1

4
− E. (5.4)

Here E = 0.5772... is Euler’s constant. Moore & Saffman (1972) generalized this
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result for vortices with arbitrary distribution of the swirl and axial velocities inside
the core. Their formula has received good confirmation in experiments by Maxworthy
et al. (1985). Based on Moore & Saffman’s (1972) analysis, Ricca (1994) showed that
the result (5.4) would be the same for an arbitrary helix of large pitch. Nonetheless,
he compared calculations of the terms responsible for the non-local induction made
with the use of Hardin’s (1982) formulas and another representation of the right-hand
side of (5.4):

ln
1

κε
+ C, C = − ln

l

a
+ 1

4
+ ln 2− E, (5.5)

where κ = a/(a2 + l2) is the curvature of the helix. Though the asymptotics at l/a� 1
are identical, the formula (5.5) describes the computational data better with a moder-
ate helix pitch. The behaviour of C with a small helix pitch was analysed by Kuibin &
Okulov (1998):

C =
a

l
+ ln

l

a
+ 3

4
, l/a� 1

Our aim is to determine the wall influence on the motion of a helical vortex in a
cylindrical tube. To do this we find the contribution of the tube wall to the motion
velocity at the point [r = a, χ = χ0] with the help of (3.24). As only the binormal
velocity component,

wb = Ba(wza/l − wϕ) = −Bawχ, (5.6)

is responsible for the motion of the vortex, we have

−Ω̂ = ŵb = ln
1

κε
+ C + ŵ

(R)
b , ŵ

(R)
b = − 4l

aB3
a

(
S (R)
χ + R(R)

χ

)
. (5.7)

Here B2
a = l2/(a2 + l2), ŵb = 4πwb/Γκ is the normalized velocity, superscript (R)

relates to the terms in (3.25)–(3.26) responsible for the interaction with the wall. In
addition to the separation of the polar singularity made in (3.25)–(3.26) we separate
the logarithm from R(R)

χ in a manner similar to the separation of the logarithm in a
stream function. The result is

ŵ
(R)
b =

2l2

B3
a a

2

[
k ln

R̃2 − ã2

R̃2
− ã2

R̃2 − ã2

]
, (5.8)

where k = (9BR − 7B3
R − 3Ba + B3

a)/12, B2
R = l2/(R2 + l2).

The quantities denoted by a tilde correspond to the distorted distances introduced
in (3.22). The remainder in R(R)

χ after the separation of the logarithm does not exceed
1.5% and it is neglected in (5.8).

Note that it is necessary to take into account the velocity at the axis if we consider
vortex motion in a tube. In the case of a vortex in an unbounded space w0 = Γ/2πl.
The contribution of the dimensionless parameter β = w02πl/Γ to the binormal
component follows from (3.24):

ŵ
(◦)
b = 2(β − 1)/Ba. (5.9)

Considering ŵ(R)
b and ŵ(◦)

b as additions to C in (5.5) let us evaluate their contribution
with the help of formulae (5.8) and (5.9). Figure 25 shows the dependence of C on the
dimensionless pitch of the vortex for the case of β = 1. Note that C = C(l/a, a/R, β)
where l/a is the same as the dimensionless torsion used by Ricca (1994). The first
curve calculated at a/R = 0 (i.e. R→∞) corresponds to the case considered by him.
With the increase in a/R the dependence departs from the logarithmic law and tends
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Figure 25. Constant C in the expression (5.5) for the binormal velocity of the helical vortex versus
the dimensionless helix pitch (β = 1).

towards a parabolic asymptote at high values of l/a and l/R:

C → −2l2/(R2 − a2).

The influence of β is limited to an almost parallel shift of the curves along the
vertical since the growth of l/a leads to the fast approach of the respective term to
the asymptotic value 2(β − 1).

The total binormal velocity may be found by summing (5.5), (5.7)–(5.9):

ŵb = ln
1

κε
+

(
ln

2a

l
+ 1

4
− E

)
+

2l2

B3
a a

2

[
k ln

R̃2 − ã2

R̃2
− ã2

R̃2 − ã2

]
+

2 (β − 1)

Ba
. (5.10)

Now let us determine the angular velocity, n, of the rotation of a helical vortex. In
view of (3.1), (3.8) and (5.6) we derive n = wϕ/a = Ba(w0Ba/l − wb/a).

Moving now to the phenomenon of vortex core precession let us note that the
precession frequency f is considered to be the frequency at which the vorticity spot
passes near a fixed point (probe) on a tube wall. This is the frequency of rotation of
the vortex core in a fixed plane and the angular frequency, 2πf, does not coincide
with the angular velocity n of the vortex rotation. Such a discrepancy is explained by
the fact that the spiral vortex has non-zero axial velocity w0. Owing to the helix-like
structure of the vortex, even its pure displacement along the z-axis at n = 0 leads to
the rotation of its core in a fixed plane perpendicular to the z-axis.

Taking into account the above notation and the connection between the axial and
tangential velocities in flow with the helical symmetry (3.9), the precession frequency
of a vortex core may be expressed as

f =
1

2π

(
n

B2
a

− w0

l

)
= − wb

2πaBa
= − Γ

8π2a2

a2

l2
Baŵb. (5.11)

We split the frequency into four parts in accordance with the four terms in the
right-hand side of (5.10): f = fκ + fτ + fR + fw0

. The first term is determined by the
size of the vortex core and curvature of the axis. The second term is responsible for
the influence of the axis torsion. The third term is the contribution due to the wall.
The last term reflects the effect of the uniform flow; this contribution is clear and is
proportional to w0/l (or β/l2).

The dependence of the dimensionless precession frequency, f̄ = 8π2a2f/Γ , on a/l
is presented in figure 26 for different values of R/a (ε/a = 0.3, β = 1, the solid lines).
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Figure 26. The dependencies of the vortex precession frequency (——) and the con-
stituent corresponding to the wall influence (- - -) on the quantity a/l (β = 1, ε/R = 0.05).
(a, d) a/R = 0.5; (b, e) a/R = 0.83; (c, f) a/R = 0.9.

The negative frequency means that the vortex moves in a direction contrary to the
flow rotation. The dashed lines correspond to the contribution of the wall effect to
the frequency. The wall’s greatest influence takes place when the vortex is located
near the wall (curves c, f ). When the vortex size a is half of the tube radius the effect
is quite weak (curves a, d ), because R enters (5.10) in squared form.

It follows from (5.11) and (5.10) that in the long-wave approximation

f |l�a =
Γ

4π2a2

[
a2

R2 − a2
− a2

2l2

(
2β − 1 +

R2

a2
ln

(
1− a2

R2

)
− 2a2

R2
+ ln

2l

ε

)
+O

(
a4

l4
ln
l

a

)]
and in the limit l→∞ we obtain the well-known formula for the motion frequency
of a point vortex in a circular area (Lamb 1932). The points corresponding to this
limit are the points of intersection of the curves with the ordinate.

Strictly speaking, expression (5.10) is valid either for slender helical vortex filaments
or for weakly curved columnar vortices. Its derivation was made by assuming a
simple model of vorticity distribution in a core: ωz = const. Nonetheless we shall
try to compare the calculated frequency with the known experimental data. The
frequency for the case presented in figure 24(a) reported by Kutateladze et al. (1987)
was 100 Hz. The calculation according to formula (5.11) with the parameters found
in § 5.2 and with R = 0.0375 m yields fc = 98.8 Hz. For the vortex precession in our
vortex chamber (see figure 24b) the measured frequency is f = 0.6 ± 0.024 Hz and
the corresponding calculated value is fc = 0.585 Hz.

An analysis of formula (5.10) permits us to draw one more important conclusion.
It concerns the possibility of stationary (immobile) helix-like vortex structures when
the self-induced velocity of rotation of a helical vortex caused by its curvature and
torsion (first and second terms in right-hand side) is compensated by the wall-induced
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Figure 27. Schematic (a) and visualization (b) of a swirl flow with a left-handed helical vortex.
de = 70 mm, ze = 560 mm, δ = 62 mm, Re = 2.4× 104, S = 4.5. Such a vortex is generated due to
the shifted exit orifice.

velocity (third term) and by the pure translational motion. The results of studying
such vortices will be described in the next section.

6. Stationary helical vortex filaments
As is noted in the previous section, flow regimes are possible where the vortex

rotation is compensated by the mean motion of the medium in the channel. In such
cases stationary helical structures may appear which were actually observed for the
first time in our experiments.

The helical vortices may arise either due to the instability of the axisymmetric
flow to spiral modes or as a result of the deformation of the rectilinear vortex
filament by means of an artificial distortion of the boundary conditions. In the
first case the spiral vortices are non-stationary and predominantly three-dimensional
(spiral waves, spiral vortex breakdown). Here we are concerned only with the second
method of generating helical vortices that allows us to observe stationary (immobile)
structures.

6.1. Single helical vortices

As in the previous sections, the flow in the vortex chamber is curled on the right and
a diaphragm with an orifice of diameter de is placed in the exit section. The central
location of the orifice leads to the formation of a stable rectilinear vortex (vortex
filament). The displacement of the exit orifice by distance δ relative to the chamber
axis causes a drastic change in the flow structure (figure 27). The air filament, which
visualizes the vortex core, curves into a spiral. As a whole this structure is immobile.
As this takes place, the liquid particles move around the spiral axis making a double
spiral motion. In the vicinity of the geometrical chamber axis, the liquid velocity is
small and directed downwards although an intense flow is observed along the axis of
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the vortex filament towards the exit orifice. The direction of the vortex axis screwing
is opposite to the particle motion, i.e. a left-handed vortex is formed. The maximum
displacement of the air filament from the chamber axis grows by increasing the
displacement of the exit orifice and achieves 43% of half the width of the chamber,
which testifies to the nonlinearity of the flow perturbation. It is necessary to note
that in such a complex and turbulent flow (Re achieves 4 × 104) an extremely thin
air filament remains continuous. In particular, this fact may be related to the decay
of the turbulence near the axis of an intense vortex.

The formation of the spiral shape of the rotation axis is observed at all angles of
nozzle turning γ > 5◦. However, the most stable state of an air filament is realized at
some intermediate position of the nozzles: γ = 10◦–20◦.

In other cases the periodic breakdown of the air filament occurs due to small-scale
disturbances. The shape of the exit orifice has no practical influence on the flow
pattern (in particular, with a slot in place of the round orifice on the retention of
the area). The displacement of the diaphragm orifice leads to some shifting of the
point where the vortex axis touches the channel bottom, however, by no more than
10–20 mm.

The helical shape that arises during the deformation of a vortex filament is explained
well by the self-induced motion. Also the immobility of a helical structure may be
explained correspondingly as a consequence of the compensation of the helix rotation
by the mean flow in a bounded space. Nonetheless the question remains why the
vortex axis is screwed to the left but not to the right. A reasonable explanation
follows from the analysis of the exact solution for velocity field (3.20). Actually, the
left-handed helical filament leads to the decay of the axial flow in the near-axis zone
of the chamber. This is clearly seen in figure 8. Indeed, in our case, the displacement
of an orifice excludes the possibility of flowing along the geometrical axis of the
chamber (or helical structure). By this means a regime with a left-screwing vortex
axis is realized.

On the other hand, the theory predicts that in the case of a right-hand helical
vortex the intense stream along the geometric axis of the chamber (helical structure)
and its decay at the periphery (see, in particular, figures 6, 8) exist. Because of this,
the assumption was made that in the experiment, the right-hand vortex could appear
in the chamber with a centrally located exit orifice (to organize the flow along the
chamber axis) and an inclined bottom (to cause initial deformation of the vortex axis).
Actually, such a right-handed structure was immediately found at these conditions as
is clearly demonstrated in figure 28.

One can state in the framework of the proposed theoretical model that, in the
initial combined vortex, the right-handed helical vortex is suppressed in the first case
and the left-hand vortex is excluded in the second case.

The above analysis permits us to suggest a hypothesis about the existence of more
complex helix-like vortex structures with the transition from a right-handed to a
left-handed symmetry. The hypothesis was tested by modifying the set-up to change
the inclination of the chamber bottom during the experiment. At the chamber exit the
diaphragm was set with an orifice of diameter de = 70 mm, shifted from the centre by
62 mm. A well-defined stationary (immobile) vortex structure with a transition from
a right helical symmetry to a left one was found under the following conditions: the
angle of the bottom inclination to the horizontal βb = 20◦; the flow rate Q = 5.25 l s−1;
the geometrical swirl parameter S = 3. Figure 29 presents photographs of the thin air
filaments that fix the geometry of the vortex axis. Photographs of the same immobile
vortex were taken from two directions at an angle of 90◦. The different number of
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Figure 28. Schematic (a) and visualization (b) of a swirl flow with a right-handed helical vortex.
de = 70 mm, ze = 390 mm, βb = 18◦, Re = 1.3× 104, S = 2.9. Such a vortex is generated due to the
inclined bottom.

turns in the photographs is explained by the changing direction of helix screwing in
the vortex (see sketch in figure 29). In the lower part of the chamber the right-hand
helical vortex is realized and a vortex with left helical symmetry is observed in the
upper section of the chamber. The transition region in the centre has a smooth
character. Here the helical symmetry breaks down similarly to the case of touching
the left vortex with the horizontal plane.

6.2. Double helix

The above-described experimental observations of helical structures concern single
vortex filaments. However, the theory of helical vortices (see § 3.3) allows for the
existence of an arbitrary number of interacting helical vortex filaments. One could
state a priori that the experimental observation of such phenomena must be extremely
difficult: there is little evidence to prove the existence of double spiral structures (non-
stationary and non-uniform). Chandrsuda et al. (1978) detected the spiral binding of
two extended vortices in a boundary layer. Boubnov & Golitsyn (1986) observed the
unsteady spiral coupling of two vortex filaments in a state of free convection in a
rotating vessel, the final stage being the merging of the two vortices into a stronger one.
The system of interacting hairpin vortices in the wake behind a body in a boundary
layer (Acarlar & Smith 1987) and in the jets (Perry & Lim 1978) is apparently bi-
spiral. The double spiral emerges also in vortex breakdown (Faler & Leibovich 1977),
but it is not evident in this case that the coloured jets are the vortex axes.

The interaction of vortex filaments seems to play a principal role in hydrodynamics.
It is supposed (Takaki & Hussain 1984) that spiral coupling is the elementary
interaction in turbulence.
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Figure 29. Immobile helical vortex with changing helical symmetry. (a) Diagram of flow: 1,
right-handed vortex; 2, left-handed vortex; 3, imaginary cylindrical surface; 4, direction of flow
swirling; 5, inclined bottom; 6, shifted exit orifice. (b, c) Flow visualization; photographs are taken
from two directions at an angle of 90◦. de = 70 mm, ze = 420 mm, δ = 62 mm, inclination angle of
the bottom βb = 20◦, Re = 2.8× 104, S = 3.
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Figure 30. Schematic (a) and visualization (b) of flow with a double helix. de = 65 mm, ze =
420 mm, βb = 50◦, Re = 4× 104, S = 3. Such a regime is formed due to the existence of two slopes
on the chamber bottom.

Attempts to generate stationary double helixes were made by authors after the
observation of stable single helical filaments, using the trial-and-error method (Alek-
seenko & Shtork 1992).

It was found that a double helix arises in a vortex chamber with a centrally lo-
cated exit orifice and two plane slopes in the channel bottom (figure 30). A double
helix represents two entangled helical vortex filaments of the same sign. The filament
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Figure 31. Multivortex structures in a cylindrical tube (calculation). N is the number of infinitely
thin helical vortex filaments.

screwing corresponds to the direction of flow swirling, i.e. these are right-handed
helical vortices. Now, it is understood on the basis of the theoretical model developed
that the screwing of vortex axes to the right is caused by the central location of
the exit orifice (that allows intensive flow along the chamber axis). As in the case
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of a single right-handed vortex the existence of two inclined slopes on the bottom
is related to the necessity of forming an initial distortion of the vortex axes. The
observed kinematics of the velocity field (by the trajectories of the air bubbles) cor-
responds completely to the theoretical calculations (see figure 31, number of vortices
N = 2).

Contrary to the relatively stable one-spiral vortex flow the bi-spiral regime should
be considered to be quasi-stationary for the following reasons. First, the air lines,
which visualize the vortex axes, are not ideal lines. They oscillate randomly and may
break sometimes. Secondly, one of the filaments always tries to dominate, since, in
order to detect a double helix, fine adjustment of the nozzle position and sometimes
of the flow rates through separate nozzles is required. But in general, the bi-spiral
regime of the vortex motion is observed clearly. The Reynolds number, as in other
experiments, does not significantly influence the flow patterns.

The parameters of the double helix (distance 2a between the filaments, helix pitch
h and number j of half-waves) depend essentially on the inclination angle βb of the
slopes on the chamber bottom. For example, j = 3, h = 250 mm, 2a = 60 mm for
βb = 50◦ (figure 30) and j = 6, h = 115 mm, 2a = 25 mm for βb = 30◦.

The theoretical model allows for an arbitrary number of helical vortices in a multi-
vortex structure. An example of a streamline picture for four vortices is shown in figure
31 (N = 4). However, in the experiment, the observation of structures including more
than two vortices is hampered by their instability arising during vortex interactions
leading to breakdown and (or) merger. Besides which, the formation of several
vortices instead of a unit means that their strength decreases by several times. For
these reasons, our experiments did not allow the emergence of a system consisting of
four well-defined vortices (which is most probable in a square chamber). In order to
generate four vortices, the bottom was made in the form of four steps with inclined
upper surfaces. In the vicinity of such a bottom, four vortices were observed clearly.
However, they were almost always disrupted in the flow core and could be seen only
for short intervals of time. The characteristic of the four-vortex pattern is that the
vortices are weakly curved and weakly pronounced. On the other hand, the intensive
flow along the chamber axis is marked. This description correlates well with the
computed flow pattern for a four-vortex structure.

7. Conclusions
Helical vortices in a swirl flow bounded by solid walls have been studied theoreti-

cally and experimentally.
A theoretical model of the helical vortices has been developed, which is based on

the Euler equations and the assumption of the helical symmetry of the flow. The two-
dimensional linear differential equation in partial derivatives for the stream function
(3.13) has been derived. Pitch l and velocity w0 at the flow axis are the parameters
of the problem. Unlike the previous treatments, swirl flow is examined in a bounded
space – a cylindrical tube. The main assumption of the theoretical model is that the
hypothesis of helical symmetry has been carefully tested.

The exact analytical solution for an infinitely thin helical vortex filament is the initial
result of the theory. The expressions for the stream function and the velocity compo-
nents are written in the form of an infinite series of cylindrical functions (formulae
(3.19)–(3.20)). They are presented through singular parts and regular remainders. The
regular remainders are small in a wide range of parameters and often they may be
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neglected. The singular parts are written through the elementary functions (formulae
(3.22), (3.25)).

On the basis of the solutions obtained, a detailed analysis has been performed on the
velocity field induced by one or several infinitely thin helical vortex filaments in a tube
for a wide range of parameters (the pitch and radius of the helix, the tube radius, the
velocity at the tube axis, the number of vortex filaments). It is necessary to underline
the following fundamental result. The right-handed helical filament (the vortex axis
screwed along the direction of flow swirling) induces intensive flowing along the
geometrical axis of the tube, but moderates the axial motion at the periphery. The
left-hand vortex leads to the opposite effect. These phenomena give one the possibility
of explaining the experimental observations of helical vortices with different helical
symmetry.

An infinitely thin vortex filament is an idealization. In real fluid, the vortices
have a core of finite size and such vortices may be adequately modelled by the
continuous distribution of vortex filaments. The axisymmetric (or columnar) vortex
is a widespread one. However, contrary to the commonly accepted representations,
the vortex core is assumed to be filled with helical vortex filaments but not rectilinear
ones! Therefore the vorticity vector is directed at some angle to the z-axis and as
a consequence axial motion is generated. The three simplest vorticity distributions
are considered: step, hat and Gaussian ones. For circumferential velocity, they give
the known profiles by Rankine, Scully and Burgers respectively. The axial velocity
distribution may vary in wide limits, achieved by changing the parameters of the
helical symmetry. Moreover, this approach permits us to construct a composite vortex
consisting of two or more cylindrical vortices. In such a manner one can approach
the arbitrary distribution of a velocity field with axial symmetry.

A model of a helical vortex with a core represented by a continuous distribution
of the helical vortex filaments is proposed. The velocity induced at any point of the
flow is calculated by means of an integrating solution for an infinitely thin vortex
filament over a corresponding part of a cross-section of the vortex (see § 5.1). As
a result we obtained relatively simple formulae for both velocities averaged over
an angular coordinate and the frequency of the precessing helical vortex in a tube.
These calculations are in good agreement with the experimental data. Notice that
the frequency of the precessing vortex in a bounded space depends not only on the
self-induced velocity but also on the velocity at the channel axis and the velocity
induced by a solid wall. The helical structure may rotate in any direction and even
be immobile under certain conditions. This point explains the existence of stationary
(immobile) helical structures in a vortex chamber.

Experimental study of the helical vortices was carried out in a vertical hydrodyna-
mical vortex chamber with a tangential supply of liquid through turning nozzles
(figure 1). Various kinds of vortex structures were formed, mainly by means of
changing the boundary conditions on the chamber bottom and at the exit cross-
section. The shape of the chamber cross-section, the Reynolds number and the swirl
parameter had an insignificant effect on the structure of the swirl flow. A series of
structures were found whose kinematics agree in general with the statements and
conclusions of the theoretical model developed: a rectilinear vortex (figure 10); a
composite columnar vortex (figure 17); a right-handed helical vortex (figure 28);
a left-handed helical vortex (figure 27); a vortex with changing helical symmetry
(figure 29); a precessing vortex (figure 21); and a double helix – two entangled vortex
filaments of the same sign (figure 30). Thus the helical vortices arising in swirl flows
have been classified.
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